• Portal do Governo Brasileiro
  • Atualize sua Barra de Governo
  • Ir para o conteúdo 1
  • Ir para o menu 2
  • Ir para a busca 3
  • Ir para o rodapé 4
  • Acessibilidade
  • Alto Contraste
  • Mapa do Site
Topo
Laboratório Nacional de Computação Científica

LNCC

Ministério da Ciência, Tecnologia e Inovações
Instagram Linkedin Facebook YouTube
  • SDumont
  • Imprensa
  • SEI-MCTI
  • Webmail
  • Intranet
  • Fale Conosco
Destaques Result. Programas PCI-LNCC Resultado Final do 1º Processo Seletivo de 2021 Guia de Conduta
logo

O LNCC

  • Histórico
  • Missão
  • Estrutura Organizacional
  • Corpo Técnico Científico
  • Documentos Institucionais
  • Localização

Coordenações

  • Coordenação de Métodos Matemáticos e Computacionais - COMAC
  • Coordenação de Modelagem Computacional - COMOD
  • Coordenação de Pós-graduação e Aperfeiçoamento - COPGA
  • Coordenação de Tecnologia da Informação e Comunicação - COTIC
  • Coordenação de Gestão e Administração - COGEA

Pesquisa e Desenvolvimento

  • Linhas de Pesquisa
  • Produção Técnico-Científica
  • Projetos de P & D
  • Grupos de Pesquisa

Supercomputador SDUMONT - Computação de Alto Desempenho

  • Supercomputador Santos Dumont
  • CENAPAD
  • SINAPAD

Programas Nacionais

  • INCT-MACC
  • LABINFO
  • SINAPAD

Inovação

  • Incubadora
  • NitRio
  • Soluções para Empresas

Programas  Acadêmicos

  • Mestrado e Doutorado
  • Programa de Verão
  • Bolsas de Estudos

Eventos

Biblioteca

  • Biblioteca

Acesso à Informação

  • Institucional
  • Ações e Programas
  • Participação Social
  • Auditorias
  • Receitas e Despesas
  • Licitações, Contratos e Convênios
  • Servidores
  • Informações Classificadas
  • Serviço de Informação ao Cidadão - SIC
  • Perguntas Frequentes
  • Dados Abertos
  • Gestão Documental
  • Agenda do Diretor
  • Carta de serviço ao Cidadão
  • Sobre a Lei de Acesso à Informação
  • Assessoria de Comunicação
  • Ouvidoria
  • Comissão de Ética
  • Gestão de Riscos
  • Guia de Conduta
  • LGPD
 

EVENTO



Análise Numérica de métodos de elementos finitos para a equação da onda no domínio da frequência

Tipo de evento:
Defesa de Tese de Doutorado


É um grande desafio o desenvolvimento de métodos numéricos robustos e computacionalmente eficientes para ondas harmônicas no tempo, governadas pela equação de Helmholtz com números de ondas elevados. A qualidade da solução numérica depende do número de ondas κ . Para números de ondas elevados(altas frequências), o operador diferencial associado torna-se indefinido, comprometendo assim a estabilidade das aproximações por métodos de elementos finitos de Galerkin ou de diferenças finitas. Conforme analisado por Ihlenburg e Babuska (IHLENBURG; BABUSKA, 1995), o método dos elementos finitos com aproximações lineares apresenta comportamento assintótico adequado, com taxa de convergência ótima, apenas para malhas extremamente
refinadas, que obedecem à condição κ2h≤1 , o que inviabiliza esta aproximação para problemas reais com alto número de onda κ . As estimativas do erro assintótico, respeitando a restrição κ2h≤1 , foram obtidas para aproximações clássicas pelo método de Galerkin contínuo. Resultados fundamentais também foram obtidos para κh≤1 , conhecido como comportamento pré-assintótico.
Como alternativas ao método de Galerkin contínuo, estudamos o comportamento das funções peso quase ótimas do método QOPG desenvolvido por Loula e Fernandes(LOULA; FERNANDES, 2009) que são responsáveis por melhores propriedades de estabilidade, precisão e robustez a distorções de malhas, e propomos formulações de elementos finitos híbridos estabilizados. Multiplicadores de Lagrange são introduzidos para impor fracamente a continuidade nas interfaces dos elementos dando origem a um sistema global que envolve apenas graus de liberdade associados aos multiplicadores. Conhecidos os multiplicadores, as variáveis de interesse são obtidas através dos problemas locais que são resolvidos no nível de elemento. Diferentes escolhas para os multiplicadores
são avaliadas. Através de técnicas de estabilização são gerados métodos de elementos finitos híbridos com grande flexibilidade na escolha dos espaços de aproximação. Permitindo, por exemplo, o uso de aproximações de mesma ordem para todas as variáveis (velocidade, pressão e multiplicador) em malhas de triângulos e quadriláteros. Para validar as formulações são realizados vários experimentos numéricos que ilustram a flexibilidade e a robustez das formulações propostas e algumas mostram taxas ótimas de convergência em malhas uniformes. Admitindo que os multiplicadores de Lagrange são exatos, apresentamos a análise numérica local de dois dos métodos desenvolvidos. Mostrando que preservam propriedades como consistência, estabilidade e taxas ótimas de convergência na norma L2 .

Para assistir a defesa acesse:
https://us02web.zoom.us/webinar/register/WN_6AcoN-QXT9-4Zi6LAVwBHw

Data Início: 27/11/2020
Hora: 14:30
Data Fim: 27/11/2020
Hora: 17:00

Local:  LNCC - Laboratório Nacional de Computação Ciêntifica - Webinar

Aluno:
Martha H. Timoteo Sanchez - - LNCC

Orientador:
Abimael Fernando Dourado Loula - Laboratório Nacional de Computação Científica - LNCC

Participante Banca Examinadora:
Cristiane O. de Faria - UERJ - UERJ
Eduardo Gomes Dutra do Carmo - Universidade Federal do Rio de Janeiro - UFRJ
Maicon Ribeiro Correa - Universidade Estadual de Campinas - UNICAMP
Sandra Mara Cardoso Malta - Laboratório Nacional de Computação Científica - LNCC

Suplente Banca Examinadora:
Alexandre Loureiro Madureira - Laboratório Nacional de Computação Científica - LNCC
Fernando A. Rochinha - PEM/COPPE - PEM/COPPE


Últimas eventos

  •   Principal
  •   Hotéis/Pousadas
  •   Área do Inscrito
 
 Voltar para o topo
Rodapé

Principal

  • Estrutura Organizacional
  • Corpo Técnico Científico
  • Produção Técnico-Científica
  • Projetos de P & D
  • Mestrado e Doutorado
  • Bolsas de Estudos
  • Seminários
  • Congressos / Escolas / Cursos
  • Biblioteca

Acesso à Informação

  • Institucional
  • Ações e Programas
  • Participação Social
  • Auditorias
  • Receitas e Despesas
  • Licitações, Contratos e Convênios
  • Servidores
  • Informações Classificadas
  • Serviço de Informação ao Cidadão - SIC
  • Perguntas Frequentes
  • Dados Abertos
  • Gestão Documental
  • Agenda do Diretor
  • Carta de serviço ao Cidadão
  • Sobre a Lei de Acesso à Informação
  • Ouvidoria
  • Comissão de Ética
  • Gestão de Riscos
  • Guia de Conduta

Serviços

  • Fale Conosco
  • Assessoria de Comunicação

Redes Sociais

  • Instagram
  • Linkedin
  • Facebook
  • YouTube

Navegação

  • Acessibilidade
  • Mapa do Site

Brasil - Governo Federal   Brasil - Governo Federal